MapReduce处理通过采集的气象数据分析每年的最高温度

数据来源于:NCDC 美国国家气候数据中心

这里是五条源数据:

0029029070999991901010813004+64333+023450FM-12+000599999V0202301N011819999999N0000001N9-00331+99999103201ADDGF108991999999999999999999
0035029070999991901010820004+64333+023450FM-12+000599999V0202301N013919999999N0000001N9-00331+99999102991ADDGF108991999999999999999999MW1701
0029029070999991901010906004+64333+023450FM-12+000599999V0209991C000019999999N0000001N9-00501+99999102871ADDGF108991999999999999999999
0029029070999991901010913004+64333+023450FM-12+000599999V0209991C000019999999N0000001N9-00331+99999102661ADDGF108991999999999999999999
0029029070999991901010920004+64333+023450FM-12+000599999V0201801N009819999999N0000001N9-00281+99999102391ADDGF108991999999999999999999

对数据格式进行解释:

位置数据含义
1-40029
5-10029070USAF weather station identifie
11-1599999WBAN weather station identifier
16-2319010108观察日期
24-271300观察时间
284
29-34+64333纬度(1000倍)
35-41+023450经度(1000倍)
42-46FM-12
47-51+0005海拔
52-5699999
57-60V020
61-63230风向
641质量代码
65N
66-690118
701质量代码
71-7599999云高(米)
769
779
78N
79-84000000能见距离(米)
851质量代码
86N
879
88-92-0033空气温度(摄氏度*10)
931质量代码
94-98+9999露点温度(摄氏度*10)
999质量代码
100-10410320大气压(hectopascals x10)
1051质量代码

我的代码是和书上一样的。依旧用的是三个class的代码框架,不多说直接上代码
新建一个MapReduce项目
先写job的代码

import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class MTJob {

    public static void main(String[] args) throws Exception {
        if (args.length != 2) {
            System.err.println("Usage: MaxTemperature <input path> <output path>");
            System.exit(-1);
        }
        @SuppressWarnings("deprecation")
        Job job = new Job();
        job.setJarByClass(MTJob.class);
        job.setJobName("Max temperature");

        FileInputFormat.addInputPath(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));
        job.setMapperClass(MTMapper.class);
        job.setReducerClass(MTReducer.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);
        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }   
}

然后就是mapper

import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
public class MTMapper extends Mapper<LongWritable, Text, Text, IntWritable> {

    private static final int MISSING = 9999;
    @Override

    public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {

        String line = value.toString();
        String year = line.substring(15, 19);
        int airTemperature;
        if (line.charAt(87) == '+') { // parseInt doesn't like leading plus signs

            airTemperature = Integer.parseInt(line.substring(88, 92));
        } else {

            airTemperature = Integer.parseInt(line.substring(87, 92));
        }
        String quality = line.substring(92, 93);
        if (airTemperature != MISSING && quality.matches("[01459]")) {
            context.write(new Text(year), new IntWritable(airTemperature));
        }
    }
}

最后是reducer

import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
public class MTReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
    @Override
    public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
        int maxValue = Integer.MIN_VALUE;
        for (IntWritable value : values) {
            maxValue = Math.max(maxValue, value.get());
        }
        context.write(key, new IntWritable(maxValue));
    }
}

然后导出jar包

这里写图片描述

查看自己需要计算的气温的文件,这里是1901,1902年的

这里写图片描述

然后就可以计算了直接运行jar包

这里写图片描述
这里写图片描述

出现上面这些信息则代表成功了

接下来查看输出结果

这里写图片描述

就可以看到自己需要结果了

年份最高气温
1901317
1902244

点击下载源码

相关文章

发表评论

您的电子邮箱地址不会被公开。